Рабочая программа по математике 9 класс

Программа по математике  составлена на основе Примерной программы (основного) общего образования по математике, авторские  программы: Ю. М. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова - « Алгебра» 2011г. и  Атанасяна Л.С., Бутузов В.Ф., Кадомцев С.Б. - «Геометрия», 2010 года и составленные с учетом федерального компонента Государственного стандарта общего образования по математике.

Цели и задачи, решаемые при реализации рабочей программы

расширить сведения о свойствах функ­ций, ознакомить учащихся со свойствами и графиком квадратич­ной функции, выработать умение строить график  квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;
выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;
дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;
развить умение применять тригонометрический аппарат при решении геометрических задач;
расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;
познакомить  учащихся с понятием движения и его свойствами, с основными видами движений;
дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об осо­бенностях выводов и прогнозов, носящих вероятностный ха­рактер;
формировать ИКТ компетентность через уроки с элементами ИКТ;
формировать навык работы с тестовыми заданиями;
подготовить учащихся к итоговой аттестации в новой форме.

Общая характеристика учебного предмета

         Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

            Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

         Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

         Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор­мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи­ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

         Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

         При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

            Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Срок реализации программы  -    2014-2015 учебный год

Обоснование выбора УМК для реализации рабочей программы

 В 9 классе используется  учебник Макарычева Ю.Н.,Миндюка Н.Г., Нешкова К.И., Суворовой С.В. Учебник доработан. Темы «Степень с рациональным показателем» и «Тригонометрические выражения и их преобразования» перенесены в старшую школу. Добавлена глава «Элементы комбинаторики и теории вероятностей». Расширены темы «Уравнения и неравенства с одной переменной» и «Уравнения и неравенства с двумя переменными». Каждая глава учебника завершается дополнительным пунктом под рубрикой «Для тех, кто хочет знать больше».
            Учебник содержит теоретический материал, написанный доступно, на высоком научном уровне, а также систему упражнений, органически связанную с теорией. Большое внимание уделено упражнениям, которые обеспечивают усвоение основных теоретических знаний и формирование необходимых умений и навыков. Учебник 9 класса ориентирован на решение задач предпрофильного обучения. Усилена прикладная направленность курса, обновлена тематика текстовых задач. Существенно увеличено число заданий развивающего характера, включены задания в форме тестов.

По геометрии используется учебник Атанасяна Л.С. Геометрия. 7-9 классы: Учебник для общеобразовательных учреждений, рекомендован Министерством образования и науки Российской Федерации. Издание подготовлено под научным руководством академика А. Н. Тихонова. Получены положительные заключения Российской академии наук (№10106 от 31.10.07) и РАО (№ 01-212\5\7д от 11.10.07).  Учебник содержит теоретический материал, написанный доступно, на высоком научном уровне, а также систему упражнений, органически связанную с теорией. Большое внимание уделено упражнениям, которые обеспечивают усвоение основных теоретических знаний и формирование необходимых умений и навыков.

 

        Распределение учебного времени:  

Количество часов – алгебра-102 часа , геометрия-68 часов.

Всего -170  час; в неделю -5 час.

Плановых контрольных работ- 13

Технологии обучения:

 

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

 

Наименование раздела программы

Требования к уровню подготовки обучающихся (результат)

«Квадратичная функция»

 

Знать свойства степенной функции.
Уметь находить значения функции, заданной формулой, таблицей, графиком по ее аргументу.
Уметь находить значение аргумента по значению функции, заданной графиком или таблицей.
Уметь определять свойства квадратичной функции по ее графику.
Уметь описывать свойства квадратичной функции, строить натуральным показателем.

«Векторы. Метод координат»

Уметь пользоваться языком геометрии для описания предметов окружающего мира.
Уметь производить операции над векторами.
Уметь вычислять значения геометрических величин.
Уметь решать геометрические задачи координатным методом.

«Уравнения и неравенства с одной переменной»

Уметь решать квадратные, рациональные уравнения, уравнения, сводящиеся к ним.
Уметь решать неравенства с одной переменной.
Уметь применять графические представления при решении уравнений и неравенств.  

 

Уровень возможной подготовки обучающегося:

 

Уметь решать алгебраические уравнения высших степеней и уравнения, сводящиеся к ним.
Уметь применять метод интервалов при решении неравенств.

Соотношения между сторонами и углами треугольника.
Скалярное произведение векторов

 

Уметь производить операции над векторами, вычислять длину и координаты вектора, угол между векторами, скалярное произведение.
Уметь вычислять значения геометрических величин, в том числе: для углов от 0о до 180о определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников.

Уравнения и неравенства с двумя переменными 

 

Уметь применять графические представления при решении уравнений и     неравенств.
Уметь применять графические представления при решении систем уравнений и  систем неравенств.

Длина окружности и площадь круга

 

Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.
Уметь решать простейшие планиметрические задачи в пространстве.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения практических задач, связанных с нахождением геометрических величин(используя при необходимости справочники и технические средства.
Уметь выполнять построения правильных многоугольников

Движения

 

Уметь решать задачи на движение фигур, центральную и осевую симметрии, параллельный перенос, поворот

«Арифметическая и геометрическая прогрессии»

Понимать смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Распознавать арифметические и геометрические прогрессии.
Решать задачи с применением формул общего члена и нескольких первых членов прогрессий

Начальные сведения из стереометрии 

 

Уметь решать задачи на доказательство.
Знать аксиомы стереометрии.

«Элементы комбинаторики и теории вероятностей»

Уметь решать комбинаторные задачи путем систематического перебора возможных вариантов.
Уметь решать комбинаторные задачи с использованием правила умножения;
Уметь находить вероятности случайных событий в простейших случаях.

 

Об аксиомах планиметрии

Знать аксиомы планиметрии.

Комплексное повторение курса математики 9 класса

знать/понимать:

существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов;
как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
как потребности практики привели математическую науку к необходимости расширения понятия числа;
вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

Планируемые образовательные результаты

 

АРИФМЕТИКА

Уметь:       

выполнять устный счет с целыми числами, обыкновенными и десятичными дробями;
переходить от одной формы записи чисел к другой, выбирая наиболее подходящую, в зависимости от конкретной ситуации; представлять десятичную дробь в виде обыкновенной и в про­стейших случаях обыкновенную в виде десятичной, проценты в виде дроби и дробь в виде процентов; применять стандарт­ный вид числа для записи больших и малых чисел; выполнять умножение и деление чисел, записанных в стандартном виде;
изображать числа точками на координатной прямой;
выполнять арифметические действия с рациональными чис­лами,   сравнивать рациональные   числа;   находить  значения степеней с целыми показателями и корней; находить значе­ния числовых выражений;
округлять целые числа и десятичные дроби,  находить при­ближенное значение числового выражения; пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные едини­цы через более мелкие и наоборот;
решать текстовые задачи, включая задачи на движение и ра­боту; задачи, связанные с отношением и с пропорционально­стью величин; основные задачи на дроби и на проценты; зада­чи с целочисленными неизвестными.

Применять полученные знания:

для решения несложных практических расчетных задач, в том числе,  с использованием при необходимости справочных материалов и простейших вычислительных устройств; для устной прикидки и оценки результатов вычислений; для проверки результата вычисления на правдоподобие, исполь­зуя различные приемы; для интерпретации результатов реше­ния задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

 

АЛГЕБРА

Уметь:

составлять буквенные выражения и формулы по условиям за­дач, осуществлять подстановку одного выражения в другое, осуществлять в выражениях и формулах числовые подстанов­ки и выполнять соответствующие вычисления, выражать из формул одни переменные через другие;
выполнять основные действия со степенями с целыми пока­зателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выпол­нять тождественные преобразования рациональных выраже­ний;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выраже­ний, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы уравнений (линейные и системы, в которых одно уравнение второй, а другое первой степени);
решать линейные неравенства с одной переменной и их систе­мы, квадратные неравенства;
решать текстовые задачи алгебраическим методом, интерпре­тировать полученный результат, проводить отбор решений, учитывать ограничения целочисленности, диапазона измене­ния величин;           
определять значения тригонометрических выражений по за­данным значениям углов;
находить значения тригонометрических функций по значе­нию одной из них;
определять координаты точки в координатной плоскости, строить точки с заданными координатами; решать задачи на координатной плоскости: изображать различные соотношения между двумя переменными, находить координаты точек пере­сечения графиков;
применять графические представления при решении уравне­ний, систем, неравенств;
находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу;
строить графики изученных функций, описывать их свойства, определять свойства функции по ее графику;
распознавать арифметические и геометрические прогрессии, использовать формулы общего члена и суммы нескольких первых членов.

Применять полученные знания:

для выполнения расчетов по формулам, понимая формулу как алгоритм вычисления; для составления формул, выра­жающих зависимости между реальными величинами; для на­хождения нужной формулы в справочных материалах; при моделировании практических ситуаций и исследовании построенных моделей (используя аппарат алгебры);
при интерпретации графиков зависимостей между величинами, переводя на язык функций и исследуя реальные зависимости;
для расчетов, включающих простейшие тригонометрические формулы;
при решении планиметрических задач с использованием ап­парата тригонометрии.

ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Уметь:

оценивать логическую правильность рассуждений, в своих до­казательствах использовать только логически корректные действия, понимать смысл контрпримеров;
извлекать информацию, представленную в таблицах, на диа­граммах, на графиках; составлять таблицы; строить диаграм­мы и графики;
решать комбинаторные задачи путем систематического пере­бора возможных вариантов и с использованием правила умно­жения;
вычислять средние значения результатов измерений; находить частоту события;
в простейших случаях находить вероятности случайных собы­тий, в том числе с использованием комбинаторики.

Применять полученные знания:

при записи математических утверждений, доказательств, ре­шении задач;
в анализе реальных числовых данных, представленных в виде диаграмм, графиков;
при решении учебных и практических задач, осуществляя систематический перебор вариантов;
при сравнении шансов наступления случайных событий;
для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.

 

ГЕОМЕТРИЯ

Уметь:

распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, исполь­зуя определения, свойства, признаки;
изображать планиметрические фигуры, выполнять чертежи по условиям задач, осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обста­новке основные пространственные тела, изображать их; пред­ставлять их сечения и развертки;
вычислять значения геометрических величин (длин, углов, площадей, объемов);
решать геометрические задачи, опираясь на изученные свой­ства фигур и отношений между ними, применяя дополнитель­ные построения, алгебраический и тригонометрический аппа­рат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать основные задачи на построение с помощью циркуля и линейки: угла, равного данному; биссектрисы данного угла; серединного перпендикуляра к отрезку; прямой, параллель­ной данной прямой; треугольника по трем сторонам;
решать простейшие планиметрические задачи в пространстве.

Применять полученные знания:

при построениях геометрическими инструментами (линейка, угольник, циркуль, транспортир);
для вычисления длин, площадей основных геометрических фигур с помощью формул (используя при необходимости справочники и технические средства).

 

Способы и формы оценивания образовательных результатов, средства контроля

 

Система контроля и оценивания знаний включает в себя:

6 уроков обобщающего повторения;
8 исьменных разноуровневых дифференцированных зачетов (5 по алгебре и 3 по геометрии);
промежуточные математические диктанты, тесты, самостоятельные диктанты;
для реализации индивидуального подхода к учащимся используются разноуровневые карточки, которые разработаны по всем темам.

 

 Все  формы  контроля по продолжительности рассчитаны на 20-45 минут.

 Текущий контроль осуществляется с помощью устного/письменного опроса.

Тематический контроль осуществляется по завершении крупного блока (темы) в  форме  контрольной работы, самостоятельной работы, выполнения зачетной  тестовой  работы.

 Итоговый контроль осуществляется по завершении учебного материала в  форме  контрольной работы.

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.
1. Оценка письменных контрольных работ обучающихся по математике.

 

Ответ оценивается отметкой «5», если:

работа выполнена полностью;
в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

 допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

 

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

 

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

 

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

 

Отметка «3» ставится в следующих случаях:

неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 

 Отметка «2» ставится в следующих случаях:

не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

 

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
незнание наименований единиц измерения;
неумение выделить в ответе главное;
неумение применять знания, алгоритмы для решения задач;
неумение делать выводы и обобщения;
неумение читать и строить графики;
неумение пользоваться первоисточниками, учебником и справочниками;
потеря корня или сохранение постороннего корня;
отбрасывание без объяснений одного из них;
равнозначные им ошибки;
вычислительные ошибки, если они не являются опиской;
 логические ошибки.

 

3.2. К негрубым ошибкам следует отнести:

неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
неточность графика;
нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
нерациональные методы работы со справочной и другой литературой;
неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

нерациональные приемы вычислений и преобразований;
небрежное выполнение записей, чертежей, схем, графиков.


Просмотров: 123 | Загрузок: 56
Автор: Брем Т.Н.
Теги: математика 9 класс
Предмет: Математика


Похожие образовательные материалы:
Всего комментариев: 0
avatar