Конспект и презентация к уроку математики "Решение квадратных уравнений"

Цель:

повторить формулы для решения квадратных уравнений; использовать полученные теоретические знания для решения задач; развивать  интерес к предмету.

послушать сообщения учеников об исторических сведениях, о квадратных уравнениях;

осуществить контроль знаний с помощью самостоятельной работы.

 

Ход урока:

 

I .Организационный момент.

СЛАЙД1

Тема нашего урока «Решение квадратных уравнений». На данном уроке мы будем заниматься повторением некоторых способов решения квадратных уравнений.

 Сегодня на уроке мы с вами повторим и закрепим знания и умения решения квадратных уравнений. Каждый из вас должен уметь правильно, быстро и рационально решать квадратные уравнения.  Сегодня мы посмотрим, как вы научились решать квадратные уравнения. Эта тема очень важная в курсе математики, она является первой ступенькой в изучении сложного материала.

2. Актуализация знаний.

1. Работа с формулами.

СЛАЙД 2

Герберт Спенсер, английский философ, когда-то сказал: “Дороги не те знания, которые откладываются в мозгу, как жир, дороги те, которые превращаются в умственные мышцы”.

Проверим, кто из вас порадовал бы Герберта Спенсера.

Проговариваю название формулы один раз, а учащиеся пишут номер формулы

СЛАЙД 3

Вопросы к формулам

1.Формула полного квадратного уравнения.

2.Формула для вычисления дискриминанта.

3. Формула приведенного квадратного уравнения.

4. Формула нахождения корней квадратного уравнения.

5. Формула неполного квадратного уравнения (с=0).

6. Формула неполного квадратного уравнения (с=0, в=0).

7. Формула неполного квадратного уравнения (в=0).

 

СЛАЙД 4

 

Листочки с каждого ряда собирает дежурный помощник. Выполняем проверку по коду.

Получили 7-значное число 1576243. Это КОД ОТВЕТА.

 

3. Из истории квадратных уравнений.

Историческая справка с презентацией, подготовленная учащимися (одним учащимся или группой учащихся).

 

Представители различных цивилизаций: Древнего Египта, Древнего Вавилона, Древней Греции, Древней Индии, Древнего Китая, Средневекового Востока, Европы овладели приемами решения квадратных уравнений.

 СЛАЙД 5

 Впервые квадратное уравнение сумели решить математики Древнего Египта. В одном из математических папирусов содержится задача:

 «Найти стороны поля, имеющего форму прямоугольника, если его площадь 12, а – длины равны ширине». «Длина поля равна 4», – указано в папирусе.

 

Уже примерно за 2000 лет до нашей эры Вавилоняне знали, как решать квадратные уравнения. Решение их в Древнем Вавилоне было тесно связано практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.

Почти во всех найденных папирусах и клинописных текстах приводятся только задачи с решениями. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел!».

СЛАЙД 6

Наиболее древние из дошедших до нас китайских математических текстов относятся к концу I в. до н. э. Во II в. до н. э. была написана «Математика в девяти книгах». Позднее, в VII в., она вошла в сборник «Десять классических трактатов», который изучали в течение многих столетий. В трактате «Математика в девяти книгах» объясняется, как извлечь квадратный корень с помощью формулы квадрата суммы двух чисел.

 Метод получил название «тянь-юань» (буквально – «небесный элемент») – так китайцы обозначали неизвестную величину. Впоследствии метод «тянь-юань» развили и разработали китайские алгебраисты XIII-XIV в. (в Европе в XIX в. он стал известен как метод Руффини-Горнера).

СЛАЙД 7

Аль – Хорезми — арабский учёный, который в 825 г. написал книгу «Книга о восстановлении и противопоставлении». Это был первый в мире учебник алгебры. Он также дал шесть видов квадратных уравнений и для каждого из шести уравнений в словесной форме сформулировал особое правило его решения.

 В алгебраическом трактате аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает шесть видов уравнений, выражая их следующим образом:

 квадраты равны корням, то есть ах2 = bх;

 квадраты равны числу, то есть ах2 = с;

 корни равны числу, то есть ах = с;

 квадраты и числа равны корням, то есть ах2 + с = bх;

 квадраты и корни равны числу, то есть ах2 + bх = с;

 корни и числа равны квадратам, то есть bх + с = ах2.

 Трактат Аль-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения. Трактаты Аль-Хорезми были в числе первых сочинений по математике переведены в Европе с арабского на латынь. До XVI в. алгебру в Европе называли искусством алгебры и макабалы.

 

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг по поводу таких соревнований говорится следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

 СЛАЙД 8

 Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

СЛАЙД 9

 Обезьянок резвых стая

 Всласть поевши, развлекалась.

 Их в квадрате часть восьмая на поляне забавлялась.

 А двенадцать по лианам... стали прыгать, повисая... Сколько ж было обезьянок,

 Ты скажи мне, в этой стае?

 

 Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Решение задачи Бхаскары:

(Решается учащимися в классе с помощью формул корней квадратного уравнения)

Пусть было x обезьянок, тогда на поляне забавлялось –  .

 Составим уравнение: + 12 = х

Х1=48;       Х2=16

Затем учащимся предлагается решить самостоятельно еще одну задачу Бхаскары. Решают квадратное уравнение по теореме, обратной теореме Виета.

СЛАЙД 10

Решение задачи Бхаскары:

Сколько обезьян в стае, если квадрат пятой части, уменьшенной тремя, спрятался в пещере, и только одна осталась на виду, взобравшись на дерево?

СЛАЙД 11

Решение: задача сводиться к решению квадратного уравнения

                                   

В заключении Бхаскара делает такое замечание: «Так как     есть число отрицательное, то годится только первое решение».

 

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2 + bх = с, при всевозможных комбинациях знаков коэффициентов b и с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

 

Практическая часть урока.

 

В школьном курсе математики подробно изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения, способ выделения квадрата двучлена, способ использования теоремы, обратной теореме Виета, графический способ.

 Имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Рассмотрим их:

 СЛАЙД 12

Тайны корней квадратных уравнений. (свойства коэффициентов квадратных уравнений)

1).   Если   а + в +с = 0 , то х1 = 1; х2 = с/а

2).  Если   а + с = в , то х1 = -1; х2 = - с/а

Решение задач.

СЛАЙД 13

1. Найдите корни уравнения:

а)     (1;

б)     (1; 0,4)

в)              (1; -5)

г)         (-1; )

д)         (-1;

СЛАЙД 14

2. Составьте три квадратных уравнения, используя свойства коэффициентов.

 

Индивидуальная работа.

Учащимся предлагается самостоятельная работа.

Привожу пример одного варианта:

1. Решить уравнение:

   

2. При каком значении а уравнение  имеет один корень?

6. Домашнее задание:

В качестве домашнего задания предлагается дорешать оставшиеся задачи (если таковые остались). Можно предложить домашнюю контрольную работу с включением подобных заданий проблемного творческого характера.

7. Подведение итогов.

Итак, сегодня мы в нестандартных заданиях обобщили и систематизировали знания и умения, приобретённые при изучении квадратных уравнений, поработали с формулами, встретились с занимательной математикой, услышали исторические факты.

8. Выставление оценок.

За работу с формулами и решение самостоятельной работы каждый учащийся получает оценки в журнал. Дополнительные оценки получают те, кто был активен на уроке.

СЛАЙД 15


Просмотров: 130 | Загрузок: 46
Автор: Коток А.В.
Теги: квадратное уравнение
Предмет: Математика


Похожие образовательные материалы:
Всего комментариев: 0
avatar