Конспект и презентации к уроку математики «Соотношения между сторонами и углами прямоугольного треугольника»

Цель урока: обобщить знания по темам: «площади», «теорема Пифагора», «соотношения между сторонами и углами прямоугольного треугольника», подготовиться к контрольной работе.

Оборудование к уроку: мультимедийный проектор «BENQ», notebook или  компьютер, кодоскоп «Лектор – 2000» или сканер, экран или белая доска, учебник «Геометрия 7 – 9» под редакцией Л.С. Атанасяна, раздаточный материал, дипломы для награждения учащихся по итогам работы, «медали».

 

ПЛАН УРОКА

Организационный момент:

Учащиеся в тетрадях записывают число и тему урока, слушают вступительное слово, которое сопровождается показом слайда.

Сегодня мы проведём урок, который покажет: покорится ли нам математический Олимп, достойны ли мы стать слушателями Академии великого древнегреческого философа. (Презентация «Теоретическая разминка», слайд № 1)

Этот учёный основал в Афинах собственную школу – Академию; ввёл математику в число предметов преподавания, основал логический метод рассуждения от противного; уделял большое внимание геометрическим задачам на построение с помощью циркуля и линейки.

С перечисленными достижениями великого учёного мы уже знакомы. Теперь нам предстоит назвать имя этого учёного.

 

Теоретический опрос:

Для начала проведём теоретическую разминку (разминка сопровождается показом сменяющихся слайдов, у учащихся на столах лежат готовые формы «Олимпа» для расшифровки криптограммы).

Нам предстоит расшифровать высказывание, которое написал на воротах своей Академии этот учёный, а также узнать его имя. (Презентация «Теоретическая разминка», слайд №2)

Ключ к разгадыванию: (Презентация «Теоретическая разминка», слайды №3 - 18)

 

То, что выражает теорема: «Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны».

Вступительный экзамен в Академию сдан, но вас ждут и другие испытания.

 

Проверка домашнего задания:

Ученики Платона решили выяснить: выполняете ли Вы домашнее задание? На дом были заданы задачи № 599 и № 602. Давайте проверим решение задач при помощи кодоскопа (сканера и проектора).

Задачу № 599 было поручено решить ф.и. ученика (ученик объясняет решение задачи, спроектированной на экран).

Спросить после объяснения: были ли другие решения этой задачи, может быть, у кого-нибудь получился другой ответ? При необходимости остановиться на спорных моментах ещё раз.

Задачу № 602 на плёнке было поручено решить ф.и. ученика (ученик только представляет решение задачи, но при наличии времени тоже может объяснить решение).

Выяснить у учащихся: были ли другие решения этой задачи, может быть, у кого-нибудь получился другой ответ? При необходимости остановиться на спорных моментах ещё раз.

Вы доказали, что являетесь прилежными учениками и выполняете домашнее задание самостоятельно, а не «сдуваете» его из ГДЗ. Но вас ждёт очередная проверка. Последователи Платона подготовили блиц – опрос.

 

Блиц – опрос:

(Работа по готовым чертежам). На оборотной стороне доски начерчены чертежи, на которые нанесены имеющиеся данные для решения каждой задачи. У учащихся на столах тоже лежат листы с готовыми чертежами.

 

№ 1

Дан прямоугольный треугольник АВС. Из вариантов ответов на следующие вопросы выберите правильные.

 

1. Чему равен cos A?

Ответ: а) cos A = 8/15; б) cos A = 8/17;

в) cos A = 17/15; г) cos A = 15/17.

 

2. Чему равен sin B?

Ответ: а) sin B = 8/15; б) sin B = 8/17;

в) sin B = 17/15; г) sin B = 15/17.

[Подпись: А]

sin B = 17/15Чему Равен tg B?

Ответ: а) tg B = 8/15; б) tg B = 8/17; в) tg B = 17/15; г) tg B = 15/17.

 

Правильные ответы:

г) cos A = 15/17
г) sin B = 15/17
Правильного ответа нет; tg B = 15/8.

№ 2.

Углы при основании трапеции равны 60° и 30°, высота трапеции равна 6 см. Найдите боковые стороны трапеции.

 

№ 3.

Диагональ параллелограмма равна а и перпендикулярна его стороне. Найдите стороны параллелограмма, если один из углов параллелограмма равен 60°.

 

Решение: в Δ ABD ,

, следовательно .

, следовательно

 

Вы успешно прошли и это испытание. Мы поднялись ещё на одну ступеньку математического Олимпа. За решение этих задач Боги – математики послали вам «медали». Вручить медали тем, кто наиболее активно участвовал в решении задач блиц – опроса.

 

Решение задачи в тетрадях:

Но ученики Платона считают, что недостаточно проверили Ваши знания по геометрии и вызывают Вас на очередной поединок. Они приготовили задачу № 601 из учебника и дополнили её вопросами. Кто же сразится за звание лучшего геометра школы № 26?

(чертёж к задаче мною заготовлен на доске заранее, данные задачи из учебника записаны, а дополнительные вопросы в данные задачи дописывает отвечающий.)

 

По окончании решения задачи вручить «медаль» лучшему геометру школы № 26. Если будут помощники при решении этой задачи, то вручить медали и им, объяснив, что команда 8 класса сплочённая, и товарищей своих они всегда поддерживают.

 

Осталось подняться на самую верхнюю ступеньку Олимпа. Вам предстоит пройти заключительное испытание.

 

Кросснамбер:

 

Лучшие ученики Платона подготовили для вас кросснамбер «Прямоугольный треугольник». (Презентация «Кросснамбер. Прямоугольный треугольник», слайд № 1).

(Кросснамбер – один из видов числовых ребусов. В переводе с английского языка слово «кросснамбер» означает «кресточислица». В каждую клетку кресточислицы вписывается по одной цифре от 0 до 9. А для того, чтобы не было путаницы, номера заданий обозначают буквами.) (Презентация «Кросснамбер. Прямоугольный треугольник», слайд № 2).

Учащиеся получают листы с текстом кросснамбера, в которых решают предложенные задачи. (Презентация «Кросснамбер. Прямоугольный треугольник», слайд № 3). Затем в таблицу вписывают ответы к задачам и заполняют поле кросснамбера.

1 ВАРИАНТ

По горизонтали:

б)      Чему равен квадрат катета прямоугольного треугольника с гипотенузой, равной 13 см и другим катетом, равным 5 см.

г)       В прямоугольном треугольнике катет равен 4 см, а косинус прилежащего угла равен 0,4. Чему равна гипотенуза?

д)      Тангенс какого угла равен 1?

е)       Чему равна площадь треугольника с катетами, равными 38 см и 9 см?

 

По вертикали:

а)      В прямоугольном треугольнике гипотенуза равна 20 см, а синус одного из острых углов равен 0,7. Чему равен катет, противолежащий данному острому углу?

б)      наименьшее простое трёхзначное число.

в)      число (б)  по горизонтали, записанное от  конца к началу.

ж)      Чему равна половина площади квадрата со стороной, равной 12 см?

2 ВАРИАНТ

По горизонтали:

б)      Чему равен квадрат катета прямоугольного треугольника с гипотенузой, равной 15 см и другим катетом, равным 9 см.

г)       В прямоугольном треугольнике катет равен 8 см, а косинус прилежащего угла равен 0,8. Чему равна гипотенуза?

д)      Синус и косинус какого угла равны?

е)       Чему равна площадь треугольника с катетами,  равными 19 см и 18 см?

 

По вертикали:

а)      В прямоугольном треугольнике гипотенуза равна 40 см, а синус одного из острых углов равен 0,35. Чему равен катет, противолежащий данному острому углу?

б)      наименьшее простое трёхзначное число.

в)      число (б)  по горизонтали, записанное от  конца к началу.

ж)      122:2

 

Работа над кросснамбером и последующая его проверка осуществляются показом слайдов. (Презентация «Кросснамбер. Прямоугольный треугольник», слайды № 4 и 5).

Проверка кросснамбера осуществляется учащимися. Соседи по парте меняются листами и проверяют задания друг у друга. Затем по предложенным критериям оценивания работы выставляют оценку за разгаданный кросснамбер, подписывая фамилию проверяющего.

 

Ну вот и завершилось последнее испытание. Лучшие ученики Платона по достоинству оценили учащихся 8 класса школы № 26 и вручают Вам Дипломы.

Каждый проверяющий выписывает за выполненную работу «Диплом слушателя Академии Платона». Каждому диплому присвоена I, II, или III степени.

Оценка «5»

Диплом I степени

Оценка «4»

Диплом II степени

Оценка «3»

Диплом III степени

 

ДИПЛОМ

____ СТЕПЕНИ

 ВРУЧАЕТСЯ  ________________________

СЛУШАТЕЛЮ АКАДЕМИИ ПЛАТОНА.

ЭТОТ ДИПЛОМ ДАЁТ ПРАВО НА ДАЛЬНЕЙШЕЕ ИЗУЧЕНИЕ МАТЕМАТИЧЕСКОЙ НАУКИ.

УЧЕНИКИ ПЛАТОНА:

ОБУХОВА О.В.

 

В диплом можно вписать фамилии коллег, присутствовавших на уроке.

 

Домашнее задание:

§ 4, п.п.66 – 67, вопросы 15 – 18 к главе VII, задача № 603.

Подготовиться к контрольной работе.

 

Задачи домашнего задания:

Задача № 599.

Дано: ABCD – трапеция, AB=CD,

BC=2 см, AD=6 см, .

Найти: .

Решение: .

В Δ ΑΒΕ . В Δ CDH . Δ ΑΒΕ=Δ CDH по гипотенузе и острому углу:

АВ=CD, (так как трапеция ABCD – равнобедренная).

Значит . Четырёхугольник  - прямоугольник, так как  и . Следовательно, . Тогда  и . , тогда .


Просмотров: 1042 | Загрузок: 241
Автор: Обухова О.В.
Теги: Пифагор, треугольник
Предмет: Математика


Похожие образовательные материалы:
Всего комментариев: 0
avatar