Конспект и презентация к уроку геометрии "Искусство рассуждать"

Целевое назначение.

1.   Активизация и развитие качеств продуктивного мышления.

2.   Развитие творческих способностей.

3.   Формирование методов и способов научного познания, исследовательских навыков, поисковых процедур.

4.   Стимулирование познавательных мотивов: интереса, стремления проникнуть в сущность явлений, осознание значимости знаний.

5.   Развитие способностей к анализу, рефлексии.

Последовательность этапов.

1.   Создание проблемной ситуации.

· Организация и актуализация определенного опыта, предшествующего проблемной ситуации.

· Организация сбора фактов о каком-либо объекте или явлении.

· Предъявление интересного детям задания (исследовательского проекта), для решения которого у учащихся нет знаний или опыта.

· Создание условий для эмоционального переживания, удивления перед парадоксальностью факта, стимулирование потребности объяснить, разрешить противоречие.

2.   Формулирование проблемы.

· Самостоятельный анализ ситуации, выявление противоречивых моментов, отделение известного от неизвестного.

· Самостоятельное формулирование проблемы.

· Планирование этапов и способов решения проблемы.

3.   Выдвижение гипотез.

· Самостоятельный (и групповой) сбор фактов, дающий основание для выдвижения гипотез .

· Самостоятельное выдвижение гипотез индивидуально и в групповом обсуждении методом “мозговой атаки” (стимулирование догадки, интуиции).

4.   Поиск решения проблемы.

Самостоятельная (и групповая) проверка каждой из гипотез путем: а) дополнительного сбора фактов; б) подведения под известные теоретические знания; в) анализа и дедуктивного обоснования; г) экспериментальной проверки и наблюдения .

5.   Формулирование выводов.

· Оформление выводов в виде письменного логического обоснования;

· Формулирование обобщенных выводов, условий, систематизация знаний по проблеме.

6.   Применение выводов на практике.

· Самостоятельное составление заданий на применение нового знания.

· Иллюстрация верности найденного способа решения проблемы на задачах данного класса.

 

Цели урока

Образовательные: ознакомление учащихся с методом доказательства от противного, с математическими софизмами.

Развивающие: развитие способности логически мыслить, выделять проблему и искать пути ее решения, приобщение к научному поиску, развитие умения отстаивать свое мнение.

Воспитательные: привитие интереса к математике, развитие навыков работы в группе, критического отношения к мнению другого.

Оборудование: компьютер, проектор, раздаточный материал, разноцветные(разноуровневые) карточки с заданиями.

 

 «Величие человека в его способности  мыслить»

Б.Паскаль

Оргмомент.

 

         Приветствие.

Оцените свое настроение в начале урока, закрасив ту рожицу, которая ему соответствует.

Большую часть информации мы получаем с помощью глаз, зрения. Но не могут ли наши глаза обманывать нас? Я предлагаю вам рассмотреть несколько рисунков. Слайды:         

Сравните на глаз длины отрезков АВ и ВС на первых двух рисунках, и определите на глаз прямые или кривые длины на рисунках 3-6.

         А теперь воспользуйтесь линейкой и ответьте на эти вопросы еще раз.

         Вывод делают дети: зрения человека дает не точную, а иногда ошибочную информацию. Что же делать? Измерять?

         Вывод делают дети: самые тщательные измерения оставляют повод для сомнения, так как в них неизбежны ошибки. Кроме того, под рукой может не оказаться измерительных инструментов, да и для всех фигур данного вида невозможно проделать измерения.

         Вывод делают дети: надо учиться рассуждать.

         Итак, тема урока: «Искусство рассуждать».

         Есть такая наука, которая учит, как нужно рассуждать, чтобы наше мышление было определенным связным, последовательным, доказательным и непротиворечивым. Кто знает, что это за наука? (Логика). Я не сомневаюсь, что голова у вас ломится от мыслей, но эти мысли надо упорядочить, направить в русло полезной работы.

         Математика поможет вам справиться с этой задачей. Недаром говорят, что математика это гимнастика для ума.

В Древней Греции всех ораторов учили геометрии. На дверях школы было написано: «Незнающий геометрии да не войдет сюда». Это объясняется тем, что геометрия учит рассуждать   и доказывать. Речь человека убедительна, когда он доказывает свои выводы.

Считается, что первыми стали применять доказательство древние грехи (6 век до н.э.) Фалес из Милета первым начал игру в «Докажи», которая и продолжается уже 2,5 тысячелетия и конца которой не видно.

Доказательство любой темы это цепочка логических умозаключений, сводящих доказываемую теорему к ранее доказанным теоремам, аксиомам и определениям.

Фронтальная работа:

А знаете ли вы, что такое определение? Аксиома? теорема? (опрос детей).

Всякая теорема имеет условие и заключение. Слайды:

Для любой теоремы можно сформулировать обратную, если условие и заключение поменять местами. Слайд:

         Но обратная теорема не всегда верна. Давайте попробуем исследовать, верны ли обратные теоремы для предложенных. Слайд:

         Итак, утверждение, обратное второму мы назвали верным.

         Но истинность всегда приходится доказывать. Доказательство проводят опираясь на аксиомы, определения, уже доказанные свойства фигур. Например, доказательство равенства вертикальных углов перед вами. Слайд:

         Исследуйте, каким определением и свойствами воспользовались при доказательстве этой теоремы.

         Есть еще один способ доказательства: от противного. Латинское «приведение к абсурду». Слайд. На столе каждого ребенка алгоритм доказательства методом от противного.

         Пример, Доказать, что паук – это не насекомое.

         Исследовательская работа:

А теперь я предлагаю вам исследовательскую работу. Попробуйте самостоятельно доказать утверждение методом от противного. Я не сомневаюсь, что вы замечательно справитесь с заданием, но если вы не уверены в себе на все 100%, то я вам предлагаю выбрать себе задание по степени сложности синяя, зеленая, желтая, белая, красная. На выполнение задания дается строго регламентированное время 3 минуты.

         Синяя:  Докажите методом от противного, что если углы не равны, то они не вертикальные.

         Зеленая: Докажите методом от противного, что два смежных угла не могут быть оба тупыми.

         Желтая: Докажите методом от противного, что если в школе 500      Белая: Докажите методом от противного, что во всяком треугольнике против большего угла лежит большая сторона.

         Красная: Докажите  методом от противного,  что если при пересечении двух прямых секущей накрест лежащие углы равны,  то прямые параллельны.

         Групповая работа:

Распределение по группам. Обсуждение. Выбор представителя. Заслушивание. Самооценка.

Занимательная математика:

         Я хочу вас познакомить с одним математическим понятием – софизмом. Софизм – это заведомо ложное умозаключение, имеющее видимость правила. То есть в доказательстве намеренно допускается ошибка, которая приводит к абсурду.

         Так, например, можно доказать, что 1=2.


Просмотров: 107 | Загрузок: 40
Автор: Юрова Г.Е.
Теги: математика 7 класс
Предмет: Математика


Похожие образовательные материалы:
Всего комментариев: 0
avatar