Рабочая программа по математике 5 кл. УМК И.И.Зубарева, А.Г.Мордкович по ФГОС

Программа по математике разработана Казанцевой Л.В., учителем математики МБОУ «Уярская СОШ №3», на основе Федерального государственного образовательного стандарта основного общего образования 2-го поколения с учетом федеральных и примерных программ предмета «Математика, 5-6 классы» М, Мнемозина, 2011 г. для основной школы по УМК И.И. Зубаревой, А.Г. Мордкович, примерной программы основного общего образования по математике, федерального перечня учебников, рекомендованных к использованию в образовательном процессе в образовательных учреждениях, базисного учебного плана и требований к результатам общего образования, представленных в Федеральном образовательном государственном стандарте общего образования, с учетом преемственности с примерными программами для начального общего образования.

Программа предназначена для обучающихся на основной ступени общего образования, рассчитана на 1 год освоения.

Предметные знания и умения, приобретённые при изучении математики в 5 классе, являются фундаментом обучения в старших классах. В то же время  предмет математика является основой развития у учащихся познавательных действий, в первую очередь логических, включая и знаково-символические. А  также таких, как планирование (цепочки действий по задачам), систематизация и структурирование знаний, преобразование информации, моделирование, дифференциация существенных и несущественных условий, аксиоматика, формирование элементов системного мышления, выработка вычислительных навыков. Особое значение имеет математика для формирования общего приема решения задач как универсального учебного действия. Таким образом, математика является эффективным средством развития личности школьника.

Данный курс создан на основе личностно ориентированных, деятельностно ориентированных и культурно ориентированных принципов, сформулированных в стандарте 2-го поколения. Основной целью является формирование функционально грамотной личности, готовой к активной деятельности и непрерывному образованию в современном обществе, владеющей системой математических знаний и умений, позволяющих применять эти знания для решения практических жизненных задач, руководствуясь при этом идейно-нравственными, культурными и этическими принципами, нормами поведения, которые формируются в ходе учебно-воспитательного процесса.

При разработке рабочей программы были учте­ны основные идеи и положения Программы формирования и развития учебных универсальных действий (познавательных, регулятивных, коммуникативных) для основного общего образования, которые нашли свое отражение в формулировках метапредметных и личностных результатов.

Исходя из общих положений концепции математического образования, курс математики 5 класса призван решать следующие задачи:

 Приобретение математических знаний и умений;
Овладение обобщенными способами мыслительной, творческой деятельности;
Освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, информационно-технологической, ценностно-смысловой).

            Программа состоит из следующих разделов: пояснительная записка, общая характеристика учебного предмета, описание места учебного предмета в учебном плане, описание ценностных ориентиров содержания учебного предмета, личностные, метапредметные и предметные результаты освоения учебного предмета, содержание учебного предмета, тематическое планирование и основные виды деятельности учащихся, материально-техническое обеспечение образовательного процесса, список использованных источников.

 

Общая характеристика учебного предмета

 

                            Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических  действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух  более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.         

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

 Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел.

 

Характеристика содержания основного общего образования по математике

Содержание математического образования применительно к основной школе в 5 классе представлено в виде следующих содержательных разделов:

арифметика;
 алгебра;
вероятность и статистика;
 геометрия.

Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия – «Логика и множества» – служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» – способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

В 5 классе реализуются линии «Арифметика»,  и «Геометрия» на наглядном уровне.

Ценностные ориентиры содержания учебного предмета

  Математическое образование играет важную роль, как в практической, так и духовной жизни общества. Практическая сторона связана с формированием способов деятельности, духовная – с интеллектуальным развитием человека, формированием характера и общей культуры.

Конкретные математические знания помогают понимать принципы устройства и использования техники, восприятие социальной, экономической, политической информации. Расчеты, применение нужных формул, геометрические измерения, чтение информации в виде таблиц и диаграмм помогают в жизненных ситуациях.

Базовая математическая подготовка дает возможность стать образованным современным человеком, получить более высокий уровень образования в областях, связанных с применением математики(физика, химия, техника, финансы, информатика, биология и т.д.)

Для жизни важным является формирование математического стиля мышления. Ведущая роль принадлежит математике в формировании алгоритмического мышления, воспитанию действовать по заданному алгоритму и созданию новых алгоритмов.

Обучение математике дает возможность развивать точную, экономическую, и информативную речь.

Математическое образование вносит вклад в формирование общей культуры человека, которое проявляется в знакомстве с методами познания действительности, представлениями о предмете и методах математики, его отличии от методов естественных и гуманитарных наук.

Изучение математики способствует эстетическому развитию человека, пониманию красоты и изяществу математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История математического развития дает возможность пополнить запас историко-научных знаний школьника. Знания об истории великих математических открытий, о великих людях, творивших науку должно войти в интеллектуальный багаж каждого культурного человека.

Достижение метапредметных результатов обеспечивается через методический аппарат учебников и учебно-методических пособий комплекта.

Методический аппарат учебников «Математика. 5 класс», выстроен в соответствии с требованиями психологической теории деятельности, в его основу положен принцип предметной деятельности учащихся в обучении. Так, введение нового материала в учебниках начинается с учебно-познавательных заданий (они в учебнике обозначены буквой У). В каждом случае последовательность этих заданий (задач, вопросов) представляет собой систему, и их выполнение дает учащимся возможность самостоятельно или с минимальной помощью учителя открыть новое для себя теоретическое знание, т.е. совершить субъективное открытие.

Среди заданий, способствующих развитию универсальных учебных действий, имеются задания, цель которых – формирование умений давать определения понятиям.

Формирование умения построения умозаключений осуществляется на протяжении всего курса обучения математике: при анализе условия и обосновании решения текстовых задач, при решении задач на применение правил или формул и т.д.

Формирование убежденнности в необходимости проведения доказательных рассуждений реализовывается как на алгебраическом, так и на геометрическом материале

Формирование регулятивных УУД, таких, как целеполагание, самостоятельное планирование и осуществление учебной деятельности, обеспечивается, в частности, возможностью выбора индивидуальной траектории обучения, чему способствует наличие в учебниках в системах задач и упражнений заданий разного уровня сложности

Формирование и раз­витие компетентности в области использования информационно-коммуникационных технологий обеспечивается:

1) наличием мультимедийных приложений к учебникам на компакт-диске (в учебниках ссылки на задания, расположенные на компакт-диске, отмечены специальным значком);

2) наличием заданий для осуществления проектной деятельности учащихся (формулировки тем для организации проектной деятельности даются в конце учебника).

Формированию ценностно-смысловых установок обучающихся, отражающих их личностные позиции, социальные компетенции, основы гражданской идентичности, способствуют материалы для организации уроков итогового повторения (в форме игры-путешествия).

Домашние задания включают тренировочные упражнения, мини-исследования, проекты и домашние контрольные работы.

Одним из приоритетных направлений в обучении математике в 5 классе является формиро­вание навыков осуществления различного вида вычислений с помощью всевозможных вычисли­тельных способов и средств. Содержание курса 5 класса нацелено на достижение основной предметной компетенции - вычислительной, а также метапредметных и личностных результатов обучения.

Познавательные: в предлагаемом курсе математики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, поиска решения задач у обучающихся формируются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать обоснованные и необоснованные суждения, обосновывать этапы решения учебной задачи, производить анализ и преобразовывать информацию (используя при решении самых разных математических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с математическим содержанием, требующим различного уровня логическое мышление. Отличительной особенностью рассматриваемого курса математики является появление  содержательного компонента «Решение комбинаторных задач».

Регулятивные: в процессе работы ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат (такая работа задана самой структурой учебника).

Коммуникативные: в процессе изучения математики осуществляется знакомство с математическим языком, формируются речевые умения: дети учатся высказывать суждения с использованием математических терминов и понятий, формулировать вопросы и ответы в ходе выполнения задания, доказательства верности или неверности выполненного действия, обосновывают этапы решения учебной задачи. Работая в соответствии с инструкциями к заданиям учебника, дети учатся работать в парах, выполняя заданные в учебнике проекты в малых группах. Умение достигать результата, используя общие интеллектуальные усилия и практические действия, является важнейшим умением для современного человека.

Образовательные и воспитательные задачи обучения математике решаются комплексно. В основе методического аппарата курса лежит проблемно-диалогическая технология, технология правильного типа читательской деятельности и технология оценивания достижений, позволяющие формировать у учащихся умение обучаться с высокой степенью самостоятельности.

   Системно-деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет пятикласснику в будущем адаптироваться в мире, где объем информации растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, конструктивно взаимодействовать с людьми.

             Компетентностный подход определяет следующие особенности предъявления содержания образования: оно представлено в виде трех тематических блоков, обеспечивающих формирование компетенций. В первом блоке представлены дидактические единицы, обеспечивающие совершенствование навыков вычислений. Во втором – дидактические единицы, которые содержат сведения о теоретических понятиях. Это содержание обучения является базой для развития коммуникативной  компетенции учащихся. В третьем блоке представлены дидактические единицы, отражающие способы действий, которыми должны овладеть учащиеся и которые обеспечивают развитие учебно-познавательной и рефлексивной компетенций. Таким образом, рабочая программа обеспечивает взаимосвязанное развитие и совершенствование ключевых обще предметных и предметных компетенций.

     Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся  понимать причины и логику развития математических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем, существующих в современном мире. Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, их приобщению, усилению мотивации к социальному познанию и творчеству, воспитанию  личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.

                В результате освоения предметного содержания математики у учащихся формируются общие учебные умения, навыки и способы познавательной деятельности. Школьники учатся выделять признаки и свойства объектов (углы, треугольники, периметр, площадь, прямоугольный параллелепипед, окружность и круг и др.), выявлять изменения, происходящие с объектами, и устанавливать зависимости между ними; определять с помощью сравнения (сопоставления) их характерные признаки. Учащиеся используют простейшие предметные, знаковые, графические модели, строят и преобразуют их в соответствии с содержанием задания (задачи).

В процессе изучения математики осуществляется знакомство с математическим языком, формируются речевые умения и навыки: дети учатся высказывать суждения с использованием математических терминов и понятий, выделять слова (словосочетания и т. д.), помогающие понять их смысл; ставят вопросы по ходу выполнения задания, выбирают доказательства верности или неверности выполненного действия, обосновывают этапы решения и др.

Математическое содержание позволяет развивать и организационные умения и навыки: планировать этапы предстоящей работы, определять последовательность предстоящих действий, осуществлять контроль и оценку их правильности, поиск путей преодоления ошибок.

Основная цель обучения математики в 5 классе:

выявить и развить математические и творческие способности учащихся;
обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений;
обеспечить базу математических знаний, достаточную для изучения смежных дисциплин и продолжения образования;
сформировать устойчивый интерес учащихся к предмету.

Повторение на уроках проводится в следующих видах и формах:

повторение и контроль теоретического материала; разбор и  анализ домашнего задания; устный счет;
математический диктант; самостоятельная работа; контрольные срезы.

Особое внимание уделяется повторению при проведении самостоятельных и контрольных работ.

 

Описание места учебного предмета в учебном плане

В Федеральном базисном образовательном плане на изучение математики в 5 классе отво­дится 5 часов в неделю, всего - 175 часов.

Изучение математики  в 5 классе основной школы направлено на достижение следующих результатов:

 1) в направлении личностного развития

 • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

 • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

 • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

 • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

 • развитие интереса к математическому творчеству и математических способностей;

 2) в метапредметном направлении

 • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

 • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

 • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности

3) в предметном направлении

 • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;

 • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Формы контроля знаний: контрольные, диагностические, самостоятельные работы, тесты, проекты.

В том числе  проведение:

контрольных работ – 9 учебных часов;
самостоятельных работ – 20 учебных часов;
исследовательской деятельности  - 5 учебных часов.

С учетом уровневой специфики 5 класса выстроена система учебных занятий. В преподавании предмета планируется использовать следующие педагогические технологии:

технология развивающего обучения;
технология обучения на основе решения задач;
технология полного обучения;
технология проблемного обучения.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

         Элементы логики, комбинаторики, статистики и теории вероятностей вводятся в 4-ой четверти. Примеры решения простейших  комбинаторных задач: перебор вариантов, правило умножения. Представление данных в виде таблиц, диаграмм. Понятие и примеры случайных событий.

Особое внимание уделяется познавательной активности учащихся, их мотивированности к самостоятельной учебной работе.  Домашние задания могут изменяться  в зависимости  от усвоения материала, темпа работы обучающихся на уроке. Домашнее задание предполагает не только выполнение тренировочных упражнений, но и другие формы: домашние контрольные работы, творческие работы в виде сообщений, презентаций, выполнение практических и исследовательских заданий, проектных заданий.

      В течение года возможны коррективы рабочей программы, связанные с объективными причинами. Резервное время выделено для коррекции усвоения  материала наиболее трудных для учащихся тем и проведения диагностических работ.

                                    Планируемые результаты

 Натуральные числа и нуль

Выпускник научится:

 понимать особенности десятичной системы счисления;
различать цифру и число;
выполнять соотношение между двумя соседними разрядными единицами;
 читать и записывать натуральные числа;
записывать числа в виде суммы разрядных слагаемых;
оперировать понятиями, связанными с делимостью натуральных чисел;
применять законы арифметических действий для упрощения выражений;
применять рациональные способы вычисления;
сравнивать и упорядочивать натуральные числа;
изображать натуральные числа точками на числовой прямой;
 выполнять вычисления с натуральными числами, сочетая устные и письменные приёмы вычислений;
округлять натуральные числа;
 применять калькулятор для выполнения арифметических действий с многозначными числами;
использовать свойства натуральных чисел при решении задач.

Степень с натуральным показателем

 выполнять действия в выражениях, содержащих степень;
 вычислять значения выражений, содержащих степень.

Числовые выражения

находить значение числового выражения;
выполнять действия по порядку;
различать буквенное и числовое выражения.

Деление с остатком

выполнять деление с остатком на множестве натуральных чисел;
 записывать натуральные числа, используя свойства деления с остатком и равенство;
решать практические задачи на деление с остатком.

Алгебраические выражения

использовать буквы для обозначения чисел;
 вычислять значения буквенного выражения;
 применять буквенные выражения для записи свойств арифметических действий;
упрощать буквенные выражения;
решать уравнения;
составлять буквенное выражение по условию задачи.

Дроби

Обыкновенные дроби

распознавать долю, часть, дробное число, дробь;
представлять дробное число как результат деления;
распознавать правильные и неправильные дроби, смешанную дробь (смешанное число);
записывать натуральное число в виде дроби с заданным знаменателем;
выполнять преобразование смешанной дроби в неправильную дробь и наоборот;
приводить дроби к общему знаменателю;
сравнивать обыкновенные дроби;
выполнять сложение и вычитание обыкновенных дробей;
выполнять умножение и деление обыкновенных дробей на натуральное число;
выполнять арифметические действия со смешанными дробями;
выполнять арифметические действия с дробными числами;
отмечать обыкновенные дроби на координатном луче;           
применять способы рационализации вычислений  при выполнении действий.

Десятичные дроби

распознавать целую и дробную части десятичной дроби;
выполнять преобразование десятичных дробей в обыкновенные дроби;
сравнивать десятичные дроби;
выполнять сложение и вычитание десятичных дробей;
 округлять десятичные дроби;
 выполнять умножение и деление десятичных дробей;
преобразовывать обыкновенные дроби в десятичные дроби.

Отношение двух чисел

находить масштаб на плане и карте;
находить наименьшее расстояние между двумя точками;
вычислять наименьшее расстояние между двумя точками.

Среднее арифметическое чисел

находить среднее арифметическое двух чисел;
решать практические задачи с применением среднего арифметического;
 находить среднее арифметическое нескольких чисел.

Проценты

определять, что такое процент;
 вычислять процент от числа и число по известному проценту;
 выражать отношение в процентах;
 решать несложные практические задачи с процентами.

      Решение текстовых задач

        Единицы измерений:

находить длины сторон прямоугольника и квадрата;
вычислять площади прямоугольника, треугольника, многоугольника;
находить объём прямоугольного параллелепипеда;
различать единицы массы, времени, скорости;
устанавливать зависимости между единицами измерения каждой величины;
находить зависимости между величинами: скорость, время, расстояние;
находить зависимости между величинами: производительность, время, работа;
находить зависимости между величинами: цена, количество, стоимость;
переводить из одних единиц измерения в другие, используя форзац учебника;

  Задачи на все арифметические действия

решать текстовые задачи арифметическим способом;
использовать таблицы, схемы, чертежи и другие средства представления данных при решении задачи;
понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций;
решать текстовые задачи алгебраическим методом.

   Задачи на движение, работу и покупки

решать несложные задачи на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения;
решать задачи на совместную работу;
применять дроби при решении задач.

Задачи на части, доли, проценты

решать задачи на нахождение части  от числа и числа по его части;
 решать задачи на проценты и доли.

Логические задачи

решать несложные логические задачи.

           Наглядная геометрия

определять знакомые фигуры в окружающем мире;
изображать фигуры на плоскости: прямую, отрезок, луч, угол, ломаную, многоугольник, окружность, круг;
различать четырехугольник, прямоугольник, квадрат;
 выделять из всех фигур треугольник;
определять вид треугольника по сторонам и углам;
находить длину отрезка, ломаной;
строить отрезок заданной длины;
определять вид угла;
находить градусную меру угла;
измерять и строить углы с помощью транспортира.
 различать пространственные фигуры: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр;
решать практические задачи с применением простейших свойств фигур.

         Введение в вероятность. Комбинаторика

 решать комбинаторные задачи на нахождение числа объектов или комбинаций;
составлять дерево возможных вариантов;
определять случайные, невозможные, достоверные события.

История математики

 познакомится с историей появления десятичной записи чисел;
познакомится с  открытием десятичных дробей;
познакомится со старинными системами мер.

Выпускник получит возможность:

понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
 понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных;
 овладеть специальными приёмами решения уравнений;
уверенно применять аппарат уравнений для решения разнообразных задач из математики, практики;
научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
 углубить и развить представления о пространственных геометрических фигурах;
 научиться применять понятие развёртки для выполнения практических расчётов;
   вычислять площади фигур, составленных из двух или более прямоугольников,  треугольников.

Планируемые метапредметные результаты.

Выпускник научится:

   Регулятивные УУД:

самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебного действия;
выдвигать версии решения  проблемы;
 осознавать (и интерпретировать в случае необходимости) конечный результат;
выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки самостоятельно (в том числе и корректировать план);
в диалоге с учителем совершенствовать самостоятельно выбранные критерии оценки.

Познавательные УУД:

проводить наблюдение и эксперимент под руководством учителя;
осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
создавать и преобразовывать модели и схемы для решения задач;
осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
анализировать, сравнивать, классифицировать и обобщать факты и явления;
давать определения понятиям.

Коммуникативные УУД:

самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
в дискуссии  выдвигать аргументы и контраргументы;
 критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
понимать позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);
 взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

3.   Личностные результаты:

идентифицировать себя с принадлежностью к народу, стране, государству;
проявлять внимание и уважение к ценностям культур других народов;
проявлять интерес к культуре и истории своего народа, страны;
различать основные нравственно-эстетические понятия;
оценивать свои и чужие поступки;
оценивать ситуации с точки зрения правил поведения и этики;
проявлять в конкретных ситуациях доброжелательность, доверие, внимательность;
выражать положительное отношение к процессу познания;
проявлять внимание, удивление, желание больше узнать;
оценивать собственную учебную деятельность: свои достижения, самостоятельность, инициативу, ответственность, причины неудач;
применять правила делового сотрудничества: сравнивать разные точки
зрения;
считаться с мнением другого человека;
проявлять терпение и доброжелательность в споре, дискуссии, доверие к собеседнику;

выполнять расчеты на бытовом уровне с использованием величин, выраженных многозначными числами;

самостоятельно  принимать решения;
 исполнительной дисциплине;
проявлять инициативу;
выбирать целевые установки;
быть уверенным в себе;
трудолюбию;
ответственности за порученное дело,
культуре поведения,
самосовершенствоваться;
 чувству долга перед родителями, учителями, учениками (коллегами),
быть надёжным;
быть гуманным;
вести здоровый образ жизни;

оперировать различными единицами измерения длин, площадей и объемов при описании объектов.

Система контроля складывается из следующих компонентов:

Математические диктанты. В математических диктантах оцениваются не только знания ученика,  но и умение его работать на слух и за ограниченное время. Оценки выставляются на усмотрение учителя и ученика.
Тесты предложены двух видов: на установление истинности утверждений и на выбор правильного ответа. Первые проверяют умение пятиклассников обосновывать или опровергать утверждения. Такие тесты позволяют акцентировать внимание школьников на формулировках определений, свойств, законов и др. математических предложений, а также развивают точность, логичность и строгость их математической речи. На их выполнение отводится от 3 до 5 минут.

Тесты второго вида (с выбором ответа из трех или четырех вариантов) проверяют владение устными вычислительными приемами, усвоение  материала каждого пункта, в той последовательности, в которой он там представлен. Тесты содержат по 10 вопросов, их можно предлагать целиком или частями, в зависимости от объема пройденного материала к моменту проведения. На выполнение каждого задания теста отводится около 1 минуты.

Самостоятельные работы содержат от 4 до 6 заданий и рассчитаны примерно на 15-20 минут. Оцениваются по желанию учащихся.
Контрольные работы составлены по крупным блокам материала или главам учебника, есть итоговая контрольная работа. В каждой работе по 5-6 заданий, первые три из них соответствуют уровню обязательной подготовки, последние задания более продвинутые по уровню сложности. На выполнение контрольной работы отводится 40-45 минут.

                       Требования к уровню усвоения дисциплины.

Рекомендации по оценке знаний, умений и навыков учащихся по математике.

Опираясь на эти рекомендации, учитель оценивает знания, умения и навыки учащихся с учетом их индивидуальных особенностей.

Содержание и объем материала, подлежащего проверке, определяется программой. При проверке усвоения материала нужно выявлять полноту, прочность усвоения учащимися теории и умения применять ее на практике в знакомых и незнакомых ситуациях.
Основными формами проверки знаний и умений, учащихся по математике являются письменная контрольная работа и устный опрос.
Среди погрешностей выделяются ошибки и недочеты.

    Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями, умениями, указанными в программе.    К недочетам относятся погрешности, свидетельствующие о недостаточно полном или недостаточно прочном усвоении основных знаний и умений или об отсутствии знаний, которые  в программе не считаются основными. Недочетами также считаются: погрешности, которые не привели к искажению смысла полученного учеником задания или способа его выполнения: неаккуратная запись, небрежное выполнение чертежа.

Задания для устного и письменного опроса учащихся состоят из теоретических вопросов и задач.

       Ответ на теоретический вопрос считается безупречным, если по своему содержанию полностью соответствует вопросу, содержит все необходимые теоретические факты  и обоснованные выводы, а его изложение и письменная запись математически грамотны и отличаются последовательностью и аккуратностью.

Решение задачи считается безупречным, если правильно выбран способ решения, само решение сопровождается необходимыми объяснениями, верно, выполнены нужные вычисления и преобразования, получен верный ответ, последовательно и аккуратно записано решение.

 Оценка ответа учащихся при устном и письменном опросе производится по пятибалльной системе.
  Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося, за решение более сложной задачи или ответ на более сложный вопрос, предложенные учащемуся дополнительно после выполнения им задания.
 Итоговые отметки (за тему, четверть, курс) выставляются по состоянию знаний на конец этапа обучения   с учетом текущих отметок.

Оценка устных ответов учащихся.

Ответ оценивается отметкой «5», если ученик:

полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
отвечал самостоятельно без наводящих вопросов учителя.

Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

 

Отметка «3»  ставится в следующих случаях:

 неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился  с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

 

Отметка «2»  ставится в следующих случаях:

не раскрыто основное содержание учебного материала;
обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

 

Оценка письменных контрольных работ учащихся.

Отметка «5»  ставится в следующих случаях:

работа выполнена полностью.
в логических рассуждениях и обоснованиях нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

 

Отметка «4» ставится, если:

работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);

 

Отметка «3» ставится, если:

допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.

 

Отметка «2» ставится, если:

допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

Тесты

«5» - 90-100%
«4» - 75-80%
«3» - 60-70%
«2» - 50% и менее.

 

Устно (по карточкам)

«5» - правильные ответы на все вопросы.
«4» - на основной вопрос ответ верный, но на дополнительные не ответил или допустил ошибку.
«3» - затруднился, дал не полный ответ, отвечал на дополнительные вопросы.
«2» - не знает ответ и на дополнительные вопросы отвечает с трудом.


Просмотров: 472 | Загрузок: 100
Автор: Казанцева Л.В.
Теги: математика 5 класс
Предмет: Математика


Похожие образовательные материалы:
Всего комментариев: 0
avatar